
Machine Learning HW3
ML TAs

ntu-ml-2022-spring-ta@googlegroups.com

Objective - Image Classification
1. Solve image classification with convolutional neural networks.
2. Improve the performance with data augmentations.
3. Understand popular image model techniques such as residual.

Task Introduction - Food Classification
● The images are collected from the food-11 dataset classified into 11

classes.
● Training set: 9866 labeled images
● Validation set: 3430 labeled images
● Testing set: 3347 images

Rules
● DO NOT attempt to find the original labels of the testing set.
● DO NOT use any external datasets.
● DO NOT use any pretrained models.

○ Also, do not attempt to “test how effective pretraining is” by submitting to kaggle.
Pretraining is very effective and you may test it after the competition ends.

● You may use any publicly available packages/code
○ But make sure you do not use pretrained models. Most code use those.
○ You may not upload your code/checkpoints to be publicly available during the timespan

of this homework.

Baseline
Simple : 0.50099

Medium : 0.73207 Training Augmentation + Train Longer

Strong : 0.81872 Training Augmentation + Model Design + Train Looonger (+
Cross Validation + Ensemble)

Boss : 0.88446 Training Augmentation + Model Design +Test Time
Augmentation + Train Looonger (+ Cross Validation + Ensemble)

Baseline GPU Time Estimation
● All results are benchmarked on kaggle

Simple : 15~20mins

Medium : Augmentation A - 6hrs

 Augmentation B - 80 min

Strong : Model X + Augmentation B + Resplit- 12 hrs

 Model Y + Augmentation B + Resplit- 10 hrs

Model Z + Augmentation B + Resplit- 6 hrs

Boss : Model Z + Augmentation B + TTA + Resplit-12 hrs

Or Ensemble

Model Y + Augmentation B + TTA + Resplit- 12 hrs

Model X + Augmentation B + TTA + Resplit-12 hrs

Submission Format
The file should contain a header and have the following format:

Both type should be strings. Id corresponds to the jpg filenames in test. Follow
the sample code if you have trouble with formatting.

Model Selection
● Visit torchvision.models for a list of model structures, or go to timm for

the latest model structures.
● Pretrained weights are not allowed, specifically set pretrained=False to

ensure that the guideline is met.

https://pytorch.org/vision/stable/models.html
https://github.com/rwightman/pytorch-image-models

Data Augmentation
● Modify the image data so non-identical inputs are given to the model each

epoch, to prevent overfitting of the model
● Visit torchvision.transforms for a list of choices and their corresponding

effect. Diversity is encouraged! Usually, stacking multiple transformations
leads to better results.

● Coding : fill in train_tfm to gain this effect

https://pytorch.org/vision/stable/transforms.html

Advanced Data Augmentation - mixup

0.5* + 0.5 * =

Label

 0 1 0 1

https://arxiv.org/pdf/1710.09412.pdf

Advanced Data Augmentation - mixup
● Coding :
● In your torch.utils.Dataset, __getitem__()needs to return an

image that is the linear combination of two images.
● In your torch.utils.Dataset, __getitem__() needs to return a label

that is a vector, to assign probabilities to each class.
● You need to explicitly code out the math formula of the cross entropy

loss, as CrossEntropyLoss does not support multiple labels.

Test Time Augmentation
● The sample code tests images using a deterministic “test transformation”
● You may using the train transformation for a more diversified

representation of the images, and predict with multiple variants of the
test images.

● Coding : You need to fill in train_tfm, change the augmentation
method for test_dataset, and modify prediction code to gain this effect

 train_tfm test_tfm

 Pred Pred Pred Pred Pred Pred Pred

Pred Ensemble

>

 test_tfm

+

Test Time Augmentation
● Usually, test_tfm will produce images that are more identifiable, so you

can assign a larger weight to test_tfm results for better performance.

● Ex : Final Prediction = avg_train_tfm_pred * 0.5 + test_tfm_pred* 0.5

 train_tfm

 Pred Pred Pred Pred Pred test_tfm_pred

avg_train_tfm_pred

 test_tfm

Cross Validation
● Cross-validation is a resampling method that uses different portions of

the data to validate and train a model on different iterations. Ensembling
multiple results lead to better performance.

● Coding : You need to merge the current train and validation paths, and
resample form those to form new train and validation sets.
 Train

Train Train

Train Train

Train

Validation

Validation

Validation

Validation

Ensemble

Cross Validation
● Even if you don’t do cross validation, you are encouraged to resplit the

train/validation set to suitable proportions.
○ Currently, train : validation ~ 3 : 1, more training data could be valuable.

Ensemble
● Average of logits or probability : Need to save verbose output, less

ambiguous
● Voting : Easier to implement, need to break ties

● Coding : basic math operations with numpy or torch

Kaggle Tutorial

Kaggle Introduction
● Kaggle GPU : 16G NVIDIA TESLA P100

○ https://www.kaggle.com/docs/efficient-gpu-usage

● Faster data IO
● Easier checkpoint reusing
● Limited to 30+ hrs/week depending on usage.
● Limited to 12hrs/run
● We strongly recommend that you run with Kaggle for this homework

https://www.kaggle.com/docs/efficient-gpu-usage

How to run

Change sorting to
“Recently Run” if you
can’t find the code

How to get data : In the input section, there should already be data titled
“ml2022spring-hw3”

If there isn’t, click on Add data and find “ml2022spring-hw3”

How to use gpu : Change accelerator to “gpu” when you run your code.

Since GPU time is limited, It is advised to NOT utilize GPU while debugging

How to Run interactively : The commands are very similar to google colab

Any output writing to ./ will end up here, you can download it

How to Run in background: Execute code from start to end, all results would
be save permanently. (Output is limited to 20G, max run time = 12hrs)

Make sure your code is bug free, as any error in any code block would result in
early stopping

How to view “Run in background” results

You can view your results this way

Don’t worry if your run is “cancelled”, the
output will still be saved.

Upload your model to become kaggle dataset
Create a new notebook with the output as input

How to utilize your results

+ New Dataset

How to train and predict
1. Run your code in background
2. Find the output data “./submission.csv” and upload it to the submission

page

How to retrain from a checkpoint
1. Run your code in background
2. Find the output model and save it as a dataset
3. Import your dataset into the notebook via “Add data”
4. Modify your code to load your checkpoint
5. Run your code in background
6. Find the output data “./submission.csv” and upload it to the submission

page

Tips and tricks

Time management
● Kaggle will allocate more time for those who have utilized GPU resources

in the past week. Time resets every Saturday at 08:00, Taipei Time.

=> Run any code with GPU on kaggle today (3/4) to get (possible) extra
time next week.

● Time consumption is the sum of notebooks running interactively with gpu
and running in background with gpu.

● Please start early

Time management
● You can go over the time limit moderately. Kaggle will not interrupt your

code in the background if it is already running. If your time limit is
reached, you cannot run any code with GPU.

=> 時間快用完的時候在背景跑一隻程式，等於多12小時runtime

=> 時間快用完的時候在背景跑兩隻程式，等於多24小時runtime

Time management - Parallelization
● You can run two codes in the background
● If you are satisfied with your code, utilize this to run multiple random

seeds/multiple train validation split/multiple model structures, so
you can ensemble

A sample procedure for beating the boss baseline
The boss baseline could be beaten with a single model trained on kaggle for 12hrs

Your procedure can be ensemble of models with parallelization

 Train : 12h

 Train : 12h Train : 12h

 Train : 12h Train : 12h

Prediction

Save checkpoint Ensemble Prediction

multiple random seeds

multiple train validation split

multiple model structures

Experimental Tips
● Augmentation is a must to prevent overfitting. A good augmentation can

carry on to the testing phase with Test Time Augmentation.
● If you build your own network structure and have implemented

augmentation, don’t be afraid to scale up your model. (Many predefined
models structure are huge and perform great)

● In TA’s experiment, model structures with downsampling work better,
simply choosing the best performing models on ImageNet according to
websites is not always a good idea because pretrained weights are not
allowed.

Other tricks……
● on Classification

○ Label Smoothing Cross Entropy Loss
○ FocalLoss

● on Optimization
○ Dropout
○ Gradient Accumulation
○ BatchNorm
○ Image Normalization

https://discuss.pytorch.org/t/why-do-we-need-to-set-the-gradients-manually-to-zero-in-pytorch/4903/20?u=alband
https://arxiv.org/pdf/1502.03167.pdf

Running with Google Colab
● We strongly recommend that you run with Kaggle for this homework
● If you would like to use colab, DO NOT store data in your drive and load

from there, the input/output is very slow. (store at ./ instead)
● If you mount your google drive in colab : G-suite google drive now has a

storage limit. Since models and data can be large, keep an eye on your
used space to prevent your account being suspended.

Report Questions

Q1. Augmentation Implementation (2%)
Implement augmentation by finishing train_tfm in the code with image size
of your choice. Copy your train_tfm code and paste it onto the
GradeScope.

● Your train_tfm must be capable of producing 5+ different results when
given an identical image multiple times.

● Your train_tfm in the report can be different from train_tfm in your
training code.

train_tfm

X

O

Q2. Residual Connection Implementation (2%)
Residual Connection is widely used in CNNs such as Deep Residual Learning
for Image Recognition. Residual is demonstrated in the following graph.

Image Source :
https://towardsdatascience.com/wh
at-is-residual-connection-efb07cab0
d55

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55

Q2. Residual Connection Implementation (2%)
Implement Residual Connections in the Residual_Model, following the
graph below. Copy your Residual_Model code and paste it on Gradescope.

c
n
n
_
l
a
y
e
r
1

● Your Residual_Model should connect like

● You should only modify the forward part of the model

c
n
n
_
l
a
y
e
r
2

c
n
n
_
l
a
y
e
r
3

c
n
n
_
l
a
y
e
r
4

c
n
n
_
l
a
y
e
r
5

c
n
n
_
l
a
y
e
r
6

f
c
_
l
a
y
e
r

=ReLU

=Addition

Submission Format
● train_tfm and Residual_Model are present in colab (scroll to

bottom) and kaggle (ML2022HW3 - Report Questions), you only need to
modify from our sample code.

Regulations and Grading Policy

Grading
● simple (public) +0.5 pts
● simple (private) +0.5 pts
● medium (public) +0.5 pts
● medium (private) +0.5 pts
● strong (public) +0.5 pts
● strong (private) +0.5 pts
● boss (public) +0.5 pts
● boss (private) +0.5 pts
● code submission +2 pts
● report +4 pts

Total : 10 pts

Code Submission
● NTU COOL

○ Compress your code and pack them into .zip file

<student_ID>_hw3.zip

● Your .zip file should include only
○ Code: either .py or .ipynb

● Do not submit models and data
● File Size Limit : 25MB
● Submit the code that corresponds to your chosen submission in Kaggle (One of the

best)

Report Submission
Answer the questions on GradeScope

Deadlines
● Kaggle, Code (NTU COOL), Report (GradeScope)

2022/03/25 23:59 (UTC+8)

Rules
● DO NOT attempt to find the original labels of the testing set.
● DO NOT use any external datasets.
● DO NOT use any pretrained models.

○ Also, do not attempt to “test how effective pretraining is” by submitting to kaggle.
Pretraining is very effective and you may test it after the competition ends.

● You may use any publicly available packages/code
○ But make sure you do not use pretrained models. Most code use those.
○ You may not upload your code/checkpoints to be publicly available during the timespan

of this homework.

Rules
● You should finish your homework on your own.
● You should not modify your prediction files manually
● Do not share codes or prediction files with any living creatures.
● Do not use any approaches to submit your results more than 5 times a

day.
● Your final grade x 0.9 and 0 pt for this HW if you violate any of the

above rules, final grade = Fail for repeat offenders
● Prof. Lee & TAs preserve the rights to change the rules & grades.

Links
Kaggle : https://www.kaggle.com/c/ml2022spring-hw3b

Kaggle code (join competition first) :
https://www.kaggle.com/c/ml2022spring-hw3b/code?competitionId=34954&so
rtBy=dateRun

Colab :
https://colab.research.google.com/drive/15hMu9YiYjE_6HY99UXon2vKGk2Kwu
gWu

https://www.kaggle.com/c/ml2022spring-hw3b
https://www.kaggle.com/c/ml2022spring-hw3b/code?competitionId=34954&sortBy=dateRun
https://www.kaggle.com/c/ml2022spring-hw3b/code?competitionId=34954&sortBy=dateRun
https://colab.research.google.com/drive/15hMu9YiYjE_6HY99UXon2vKGk2KwugWu
https://colab.research.google.com/drive/15hMu9YiYjE_6HY99UXon2vKGk2KwugWu

Contact us if you have problems…
● Kaggle Discussion (Recommended for this HW)
● NTU COOL
● Email

○ mlta-2022-spring@googlegroups.com
○ The title should begin with “[hw3]”

mailto:mlta-2022-spring@googlegroups.com

